39 research outputs found

    A methodology to design kinematics of fixations between an orthosis and a human member

    Get PDF
    International audienceThe design of robotic orthoses focuses strongly on replicating kinematics of human limb. However, often sophisticated mechanisms which attempt at reproducing complex kinematics of human joints fails in adapting to geometrical variations of subjects sizes and eccentricities. One major that arrises from this mismatching is an occurrence of hyperstaticity induced by the uncontrolled interaction forces. In this paper, we take the point of view of statics to investigate the force transmission problem, which is required for a fine force control. The main result of this study focuses on designing fixations between the orthosis and the human limb that provide additional degrees of freedom. The method involves two steps. Firstly, a set of possible solutions with respect to the isostaticity criterion is derived. Then, among these possible solutions, a set of design rules considering physiological aspects of transmitting forces to human limbs is used to select a preferred configuration. As an example, the method is applied to an existing 4 active DOF arm orthosis

    A formal methodology for avoiding hyperstaticity when connecting an exoskeleton to a human member

    Get PDF
    International audienceThe design of a robotic exoskeleton often focuses on replicating the kinematics of the human limb that it is connected to. However, human joint kinematics is so complex that in practice, the kinematics of artificial exoskeletons fails to reproduce it exactly. This discrepancy results in hyperstaticity. Namely, uncontrolled interaction forces appear. In this paper, we investigate the problem of connecting an exoskeleton to a human member while avoiding hyperstaticity; to do so, we propose to add passive mechanisms at each connection point. We thus introduces a formal methodology for avoiding hyperstaticity when connecting wearable robotic structures to the human body. First, analyzing the twist spaces generated by these fixation passive mechanisms, we provide necessary and sufficient conditions for a given global isostaticity condition to be respected. Then, we derive conditions on the number of Degrees of Freedom (DoFs) to be freed at the different fixations, under full kinematic rank assumption. We finally apply the general methodology to the particular case of a 4 DoF shoulder-elbow exoskeleton. Experimental results allow to show an improvement in transparency brought by the passive mechanism fixations

    A Framework to Describe, Analyze and Generate Interactive Motor Behaviors

    Get PDF
    International audienceWhile motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks

    How can human motion prediction increase transparency?

    Get PDF
    International audienceA major issue in the field of human-robot interaction for assistance to manipulation is transparency. This basic feature qualifies the capacity for a robot to follow human movements without any human-perceptible resistive forces. In this paper we address the issue of human motion prediction in order to increase the transparency of a robotic manipulator. Our aim is not to predict the motion itself, but to study how this prediction can be used to improve the robot transparency. For this purpose, we have designed a setup for performing basic planar manipulation tasks involving movements that are demanded to the subject and thus easily predictible. Moreover, we have developed a general controller which takes a predicted trajectory (recorded from offline free motion experiments) as an input and feeds the robot motors with a weighted sum of three controllers: torque feedforward, variable stiffness control and force feedback control. Subjects were then asked to perform the same task but with or without the robot assistance (which was not visible to the subject), and with several sets of gains for the controller tuning. First results seems to indicate that when a predictive controller with open loop torque feedforward is used, in conjunction with force-feeback control, the interaction forces are minimized. Therefore, the transparency is increased

    Hyperstaticity for Ergonomic Design of a Wrist Exoskeleton

    Get PDF
    International audienceIncreasing the level of transparency in rehabilitation devices has been one of the main goals in robot-aided neurorehabilitation for the past two decades. This issue is particularly important to robotic structures that mimic the human counterpart's morphology and attach directly to the limb. Problems arise for complex joints such as the human wrist, which cannot be accurately matched with a traditional mechanical joint. In such cases, mechanical differences between human and robotic joint cause hyperstaticity (i.e. overconstraint) which, coupled with kinematic misalignments, leads to uncontrolled force/torque at the joint. This paper focuses on the prono-supination (PS) degree of freedom of the forearm. The overall force and torque in the wrist PS rotation is quantified by means of a wrist robot. A practical solution to avoid hyperstaticity and reduce the level of undesired force/torque in the wrist is presented, which is shown to reduce 75% of the force and 68% of the torque

    Changing human upper-limb synergies with an exoskeleton using viscous fields

    Get PDF
    International audienceRobotic exoskeletons can apply forces distributed on the limbs of the subject they are connected to. This offers a great potential in the field of neurorehabilitation, to address the impairment of interjoint coordination in hemiparetic stroke patients. In these patients, the normal flexible joint rotation synergies are replaced by pathological fixed patterns of rotation. In this paper, we investigate how the concept of synergy can be exploited in the control of an upper limb exoskeleton. The long term goal is to develop a device capable of changing the joint synchronization of a patient performing exercises during rehabilitation. The paper presents a controller able of generating joint viscous torques in such a way that constraints on joint velocities can be imposed to the subject without constraining the hand motion. On another hand, the same formalism is used to describe synergies observed on the arm joint motion of subjects realizing pointing tasks. This approach is experimented on a 4 Degrees Of Freedom (DoF) upper arm exoskeleton with subjects performing pointing 3-dimensional tasks. Results exhibit the basic properties of the controller and show its capacity to impose an arbitrary chosen synergy without affecting the hand motion

    A versatile biomimetic controller for contact tooling and haptic exploration

    Get PDF
    International audienceThis article presents a versatile controller that enables various contact tooling tasks with minimal prior knowledge of the tooled surface. The controller is derived from results of neuroscience studies that investigated the neural mechanisms utilized by humans to control and learn complex interactions with the environment. We demonstrate here the versatility of this controller in simulations of cutting, drilling and surface exploration tasks, which would normally require different control paradigms. We also present results on the exploration of an unknown surface with a 7-DOF manipulator, where the robot builds a 3D surface map of the surface profile and texture while applying constant force during motion. Our controller provides a unified control framework encompassing behaviors expected from the different specialized control paradigms like position control, force control and impedance control

    Quantitative Assessment of Motor Deficit with an Intelligent Key Object: A Pilot Study

    Get PDF
    International audienceConventional assessment of sensorimotor functions is carried out using standard clinical scales which are subjective and insufficiently sensitive to changes in motor performance. Alternatively, sensor based systems offer a quantitative approach to motor assessment. We have designed a set of low cost, easy to use instrumented objects to assess a subject's performance during skilled tasks. In this pilot study we discuss the design of one object, the intelligent key, and describe how it can be used to assess a subject's performance during fine manipulation tasks using the proposed metrics and techniques. Three subjects with motor disability and one healthy subject participated in this study. Subjects performed insertion and rotation tasks that mimic the skills used in day to day key manipulation. A threshold detector algorithm based on Teager Energy Operator was applied to the object acceleration signal to quantify time spent struggling with the task and Spectral Arc Length was used to assess the smoothness of pronation/supination. Overall, the results indicate that increased difficulty in task performance correlates with decreased smoothness in task performance

    Spectral parameters for finger tapping quantification

    Get PDF
    A miniature inertial sensor placed on fingertip of index finger while performing finger tapping test can be used for an objective quantification of finger tapping motion. Temporal and spatial parameters such as cadence, tapping duration, and tapping angle can be extracted for detailed analysis. However, the mentioned parameters, although intuitive and simple to interpret, do not always provide all the necessary information regarding the subject's motor performance. Analysis of frequency content of the finger tapping movement can provide crucial information about the patient's condition. In this paper, we present parameters extracted from spectral analysis that we found to be significant for finger tapping assessment. With these parameters, tapping's intra-variability, movement smoothness and anomalies that may occur within the tapping performance can be detected and described, providing significant information for further diagnostics and monitoring progress of the disease or response to therapy
    corecore